On Maximally Inflected Hyperbolic Curves

نویسندگان

  • Aubin Arroyo
  • Erwan Brugallé
  • Lucia López de Medrano
چکیده

In this note we study the distribution of real inflection points among the ovals of a real non-singular hyperbolic curve of even degree. Using Hilbert’s method we show that for any integers d and r such that 4 ≤ r ≤ 2d − 2d, there is a non-singular hyperbolic curve of degree 2d in R with exactly r line segments in the boundary of its convex hull. We also give a complete classification of possible distributions of inflection points among the ovals of a maximally inflected non-singular hyperbolic curve of degree 6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAXIMALLY INFLECTED REAL RATIONAL CURVES VIATCHESLAV KHARLAMOV AND FRANK SOTTILE Dedicated to V. I. Arnold on the occassion of his 65th birthday

We begin the topological study of real rational plane curves all of whose inflection points are real. The existence of such curves is implied by the results of real Schubert calculus, and their study has consequences for the important Shapiro and Shapiro conjecture in real Schubert calculus. We establish restrictions on the number of real nodes of such curves and construct curves realizing the ...

متن کامل

Maximally Inflected Real Rational Curves

We introduce and begin the topological study of real rational plane curves, all of whose inflection points are real. The existence of such curves is a corollary of results in the real Schubert calculus, and their study has consequences for the important Shapiro and Shapiro conjecture in the real Schubert calculus. We establish restrictions on the number of real nodes of such curves and construc...

متن کامل

Rims-1750 on the Cuspidalization Problem for Hyperbolic Curves over Finite Fields

In this paper, we study some group-theoretic constructions associated to arithmetic fundamental groups of hyperbolic curves over finite fields. One of the main results of this paper asserts that any Frobeniuspreserving isomorphism between the geometrically pro-l fundamental groups of hyperbolic curves with one given point removed induces an isomorphism between the geometrically pro-l fundamenta...

متن کامل

The Profinite Grothendieck Conjecture for Closed Hyperbolic Curves over Number Fields

In [Tama], a proof of the Grothendieck Conjecture (reviewed below) was given for smooth affine hyperbolic curves over finite fields (and over number fields). The purpose of this paper is to show how one can derive the Grothendieck Conjecture for arbitrary (i.e., not necessarily affine) smooth hyperbolic curves over number fields from the results of [Tama] for affine hyperbolic curves over finit...

متن کامل

Correspondences on Hyperbolic Curves

We consider hyperbolic curves over an algebraically closed field k of characteristic zero. We call two such curves X, Y isogenous if there exists a nonempty scheme C , together with finite étale morphisms C → X, C → Y . (We refer to such a pair (C → X,C → Y ) as a correspondence from X to Y .) It is easy to see that the relation of isogeny is an equivalence relation on the set of isomorphism cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014